

Green protein from locally grown crops

Problem

Organic poultry producers are often confronted with high feed costs and a lack of alternative high-quality protein sources for poultry.

Solution

Green protein concentrate can be produced from locally grown crops such as clover-grass (see figure 1) or alfalfa. It can be used in the diets of organic broilers and layers. In a bio-refinery, protein concentrate is obtained by pressing fresh green material (see figure 2), heating/fermenting the juice to precipitate protein and finally putting it in a centrifuge. The concentrated green protein can be dried and added to poultry feed.

Benefits

Concentrate from clover/clover grass and alfalfa has a high protein content and an optimal amino acid profile for poultry, which makes the feed formulation of organic diets more optimal. An increase in locally grown protein sources can improve the sustainability of the farm and make the farmer less dependent upon imported protein, such as soya, from overseas.

Applicability box

Theme

Crop production - Animal husbandry -Feed and nutrition - Feed processing and handling - Arable crops - Forage -Production systems - Poultry - Nutritive values and needs - Ration planning

Geographical coverage

In temperate climates. Middle and Northern Eu-rope.

Application time

The product can be used at any time of the year if the protein paste are dried and stored under opti-mal conditions.

Required time

Harvest time of green protein during spring, sum-mer and autumn, processing time in a bio-refinery and time to dry it.

Period of impact

Immediate Impact

Equipment

Machinery required for harvest of green material (clover/grass/ alfalfa) and for transportation to a bio-refinery plant or to storage facilities.

Best in

Choice of crop for production of green protein de-pends on the country, soil type and weather condi-tions during preferred harvest time. Advantageous in crop rotation.

Practical Recommendations

- Choose an appropriate type of green crop, such as clover-grass or alfalfa, with an expected high protein and amino acid content. Consider soil types and weather patterns to grow a crop with a good and high quality yield.
- Harvest the field at regular intervals in order to achieve good plant growth and to obtain batches with more high quality protein and less fibre.

IF AR A MAKING

- Harvesting procedures, which minimise soil content in the green material obtained from the field are necessary to obtain good quality green protein and to avoid wear of machinery and technical equipment.
- Cooperation with a bio-refinery plant is a prerequisite in order to concentrate the protein into a green paste that can be dried and used in poultry feed.
- If not dried, the wet green paste can be stored in closed containers/plastic bags in cool conditions for a shorter period.
- Chemical analysis of the green protein concentrate is important in order to replace other protein sources such as soya and to carry out the correct feed formulation. This can be done together with advisors or feed companies.

Figure 1: Harvesting of locally grown clover-grass. Photo: Erik Fog, SEGES

Figure 2: Screw pressing of fresh clover grass into green juice and press cake. Photo: Erik Fog, SEGES

Further information

Video

• Video "GRASS PROTEIN - a golden chance to improve organic farming" from Seges

Weblinks

- Report on "Green Biomass Protein Production Through Bio-refining"
- OrganoFinery: Organic growth with biorefined organic protein feed, fertilizer and energy
- Check the <u>Organic Farm Knowledge</u> platform for more practical recommendations.

About this practice abstract and OK-Net EcoFeed

Publishers:

Dept. of Animal Science (ANIS) and Dept. of Engineering (AU) Aarhus University (AU), DK 8830 Tjele,

Phone +45 8715 6000/+45 8715 8074, , anis.au.dk, eng.au.dk

Section for Sustainable Biotechnology, Dept. of Chemistry and Bioscience Aalborg University (AAU), DK 2450 Copenhagen, Phone +45 2447 0418, , bio.aau.dk

Research Institute of Organic Agriculture (FiBL), CH 5070 Frick, Phone +41 62 865 72 72, info.suisse@fibl.org, www.fibl.org

IFOAM Organics Europe, BE 1000 Brussels, Phone +32 2 280 12 23, www.organicseurope.bio, www.organicseurope.bio

Authors: Sanna Steenfeldt, Morten Ambye-Jensen, Mette Lübeck

Contact: sanna.steenfeldt@anis.au.dk, maj@eng.au.dk, mel@bio.aau.dk

Permalink:

https://organic-farmknowledge.org/tool/37034

OK-Net EcoFeed:

https://orgprints.org/view/projects/OKNetEcoFeed.html

This practice abstract was elaborated in the Organic Knowledge Network on Monogastric Animal Feed project. The project is running from January 2018 to December 2020. The overall aim of OKNet EcoFeed is to help farmers, breeders and the organic feed processing industry in achieving the goal of 100% use of organic and regional feed for monogastrics.

Project website: https://ok-net-ecofeed.eu/

Project partners:

IFOAM Organics Europe (project coordinator), BE; Aarhus University (ICROFS), DK; Organic Research Centre (ORC), UK; Institut Technique de l'Agriculture Biologique (ITAB), FR; Research Institute of Organic Agriculture (FiBL), CH; Bioland, DE; Associazione Italiana perl'Agricoltura Biologica (AIAB), IT; Donau Soja DS, AT; Swedish University of Agricultural Sciences, SE; ECOVALIA, ES; Soil Association, UK.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 773911. This communication only reflects the author's view. The Research Executive Agency is not responsible for any use that may be made of the information provided. The authors and editors do not assume responsibility or liability for any possible factual inaccuracies or damage resulting from the application of the recommendations in this practice abstract

